
Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

COURSE DESCRIPTION

1. Program identification information
1.1 Higher education
institution National University of Science and Technology Politehnica Bucharest

1.2 Faculty Electronics, Telecommunications and Information Technology
1.3 Department Electronic Devices, Circuits and Architectures

1.4 Domain of studies Electronic Engineering, Telecommunications and Information
Technology

1.5 Cycle of studies Bachelor’s
1.6 Programme of studies Microelectronics, Optoelectronics and Nanotechnologies

2. Date despre disciplină
2.1 Course name (ro)
(en)

Programarea calculatoarelor și limbaje de programare 1
Computer Programming and Programming Languages 1

2.2 Course Lecturer Lect. Dr. Vlad-Alexandru Grosu

2.3 Instructor for practical activities Lect. Dr. Vlad-Alexandru Grosu / Teaching Assistant (PhD
student) Grigore Țiplea

2.4 Year of
studies 1 2.5

Semester I 2.6. Evaluation type E 2.7 Course regime Ob

2.8 Course type F 2.9 Course
code 04.F.01.O.004 2.10 Tipul de notare Nota

3. Total estimated time (hours per semester for academic activities)
3.1 Number of hours per week 4 Out of which: 3.2 course 2 3.3 seminary/laboratory 2
3.4 Total hours in the curricula 56 Out of which: 3.5 course 28 3.6 seminary/laboratory 28
Distribution of time: hours
Study according to the manual, course support, bibliography and hand notes
Supplemental documentation (library, electronic access resources, in the field, etc)
Preparation for practical activities, homework, essays, portfolios, etc.

38

Tutoring 2
Examinations 4
Other activities (if any): 0
3.7 Total hours of individual study 44.00
3.8 Total hours per semester 100
3.9 Number of ECTS credit points 4

4. Prerequisites (if applicable) (where applicable)

4.1 Curriculum Algebra and Mathematical Analysis
Mathematical Logic

4.2 Results of
learning

Applying basic knowledge, concepts, and methods from algebra and mathematical
analysis to computer-based modeling of the problems proposed for solution.

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

5. Necessary conditions for the optimal development of teaching activities (where applicable)

5.1 Course
It will take place in a room equipped with a video projector and a computer, together
with all related accessories: power cables (data and video signal), and the projector
remote control.

5.2 Seminary/
Laboratory/Project

It will take place in a room with specific equipment, which must include:
General-purpose computing systems (personal computers) required to
implement specific methods and algorithms, with the necessary software
installed (operating system and required working applications—integrated
development environment, IDE)
Whiteboard along with specific accessories: special markers, whiteboard eraser,
and cleaning solutions.

6. General objective (Reffering to the teachers' intentions for students and to what the students will be
thought during the course. It offers an idea on the position of course in the scientific domain, as well as the
role it has for the study programme. The course topics, the justification of including the course in the
currcula of the study programme, etc. will be described in a general manner)

The discipline is scheduled in year 1, semester 1 (the common core of engineering training).

It is a fundamental engineering subject that provides the study foundations especially for later
specializations based on intensive work with the personal computer, which include in the curriculum
fundamental subjects based on the use/design of algorithms, source code writing (implementation) as well as
debugging activities (identifying semantic errors).

For the lecture, the aim is to assimilate the concepts of structured programming (with a view to syntactically
grounding object-oriented programming in C++, which will follow), necessary for computer modeling of
various real-life problems, as well as those involved in designing and implementing dedicated applications
or tasks encountered in practice. Various practical situations are analyzed and algorithms are implemented in
a high-level language designed using object-oriented software design principles (ISO C). The programs
developed in the laboratory help form mental reflexes in modeling reality and assist students in their future
engineering activity. The skills and abilities provided by the course constitute fundamental knowledge
absolutely necessary for subjects specific to software-oriented specialization tracks that students may choose
in the next study cycle (starting with the 3rd year).

For the laboratory (applications), the proposal is to develop general routines of at most medium level
dedicated to solving situations encountered in real life. Thus, easy construction by hardware/software
designers of a specific library is envisaged. Programs are conceived using the ISO C/C++ languages, thereby
ensuring program portability and allowing immediate interfacing and work with most development/design
packages that are based on these related languages.

The skills acquired from writing programs in the laboratory (and using the integrated development
environment) become working tools for students, first for activities within the specialization years
(depending on their choices) and later, for year projects and the bachelor’s thesis, and ultimately in the
private sector (future software engineer).

7. Competences (Proven capacity to use knowledge, aptitudes and personal, social and/or methodological
abilities in work or study situations and for personal and proffesional growth. They refflect the empolyers
requirements.)

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

Specific
Competences

C3: Applying basic knowledge, concepts, and methods regarding computer system
architecture, microprocessors, microcontrollers, programming languages, and
programming techniques.

Transversal
(General)
Competences

CT1: Methodical analysis of problems encountered in activity, identifying
elements for which established solutions exist, thus ensuring the fulfillment of
professional tasks;
CT3: Adapting to new technologies, professional and personal development
through continuous training using printed documentation sources, specialized
software, and electronic resources in Romanian and at least one international
language.

8. Learning outcomes (Synthetic descriptions for what a student will be capable of doing or showing at the
completion of a course. The learning outcomes reflect the student's acomplishments and to a lesser extent
the teachers' intentions. The learning outcomes inform the students of what is expected from them with
respect to performance and to obtain the desired grades and ECTS points. They are defined in concise
terms, using verbs similar to the examples below and indicate what will be required for evaluation. The
learning outcomes will be formulated so that the correlation with the competences defined in section 7 is
highlighted.)

The result of knowledge aquisition through learning. The knowledge represents the totality of facts,
priciples, theories and practices for a given work or study field. They can be theoretical and/or
factual.

Enumerates programming concepts in general and structured programming in particular
(per the Böhm–Jacopini theorem) that underlie the studied language.
Understands that implementation is not the only core activity in the context of computer
programming and, more broadly, software development.
Analyzes design requirements and the steps needed to actually design an application (as a
consequence of the previous statement).
Assimilates the specialized vocabulary (jargon) used in the programming field.
Is able to describe the component areas of the implemented ISO C program needed to solve
a given problem (presented in natural language).

K
no

w
le

dg
e

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

The capacity to apply the knowledge and use the know-how for completing tasks and solving
problems. The skills are described as being cognitive (requiring the use of logical, intuitive and
creative thinking) or practical (implying manual dexterity and the use of methods, materials, tools
and intrumentation).

Identifies and describes the fundamental concepts together with their implementation
methods: data/function hiding, code reuse, function overloading and overriding.
Models the proposed problems by formalizing the problem text (practices the
program/application design stage).
Identifies the program components that interact in the application to be written.
Identifies solutions and develops plans for solving the proposed problems (expressed in
natural language).
Analyzes and compares the solution found for the assigned problem with the suggestions
offered by the lab instructor for that specific problem.
Tests, debugs, and runs the written program (the implemented application) and is able to
correct possible errors after identifying them in advance, along with possible consequences.

The student's capacity to autonomously and responsably apply their knowledge and skills.

Demonstrates receptiveness to new learning contexts (structured programming principles
may be new from the curriculum perspective).
Respects academic ethics, understanding the responsibilities assumed in individually solving
proposed problems using the methods and techniques learned.
Demonstrates autonomy in organizing the learning situation/context or the situation posed
by the problem to be solved.
Becomes aware of the value of their contribution in software engineering, in active life, by
identifying and proposing their own solutions to solve problems in social and economic life
(social responsibility).

9. Teaching techniques (Student centric techniques will be considered. The means for students to
participate in defining their own study path, the identification of eventual fallbacks and the remedial
measures that will be adopted in those cases will be described.)

Starting from the analysis of students’ learning characteristics and their specific needs, identified by the
course holder through personal experience in the private sector, the teaching process uses both expository
methods (lecture, presentation) and conversational–interactive methods, based on action-based learning
models such as exercises or solving programming problems. Interactivity with students through the practical
component associated with the taught concepts is particularly emphasized.

Time slots are reserved for presenting and solving current problems that students encounter in year 2
electronics subjects: modeling electronic devices, analyzing passive components and circuits, and preparing
engineering skills for problem solving using computers (numerical methods).

The modeling part often reduces to solving practical problems identified in real life. The presented concepts
prepare the way for correlated subjects in years 1 and 2 (Computer Programming and Programming
Languages 2, Data Structures and Algorithms, Numerical Methods) and later, in years 3 and 4, for subjects
such as: Deep Learning and Artificial Intelligence, Robotics, or Neural Networks and Fuzzy Systems.

Sk
ill

s
R

es
po

ns
ab

ili
ty

an
d

au
to

no
m

y

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

Dialogue during the lecture continues in the laboratory sessions. These are necessary for preparing students
for ongoing individual verification tests, which build skills for solving problems under time constraints. A
typical session begins with a brief review of the programming concepts specific to the lab. Afterwards,
students aim to design and write complete, functional programs—starting from a statement in natural
language (Romanian).

The language used is ISO C, standard C 1999. The open-source development environment used in the lab is
configurable accordingly and can be instructed to use the indicated ISO C standard variant via the
compilation option -std=c99. The integrated development environment and platform materials for the lab are
available to students in electronic form.

10. Contents
COURSE

Chapter Content No.
hours

1
Introduction.
The notion of a compiler. C standards.
Bibliographic commentary.

2

2
Structure of C programs.
Syntax–semantics distinction. Components of a program. Language alphabet.
Keywords.

2

3

Memory: regions and address spaces.
Memory alignment. Number bases. Types of memory. Memory models used by the
compiler. Fundamental data types in C. Declaring and defining variables and constants.
Storage classes. Global variables.

2

4

Operators and expressions.
Classification of operators. Examples for the identified operator classes. Precedence
and associativity. Implicit and explicit conversions. Details about the comment area in
the general program structure. Details about header files. Details about the
preprocessor directives area. Inline functions (macros): introduction.

2

5
Statements.
Expression, block, decision (if), selection (switch), and looping statements. Examples.
Jump statements: continue, break, goto.

2

6

Function prototypes and definitions.
Inline functions (continued): differences between macro expansion and a function call.
The main() function: details. Modularization. Details on the user-defined type area
(typedef). Details on the function prototypes area.

2

7

Functions.
Declaration and definition. Local and external variables. Function calls. Formal and
actual parameters. Stack. Calling conventions. Macro functions (details). Comparing
iterative and recursive functions.

2

8

Pointers.
Declaration, initialization. Address-of and dereference operators. The special NULL
value. Pointer arithmetic. The void type applied to pointers. Functions with pointer
arguments and pointer return types. Pointers to functions. Dynamic memory allocation
techniques.

4

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

9

Arrays.
1-D and n-D arrays: declaration, definition. Initialization. Indexing. Strings. The array–
pointer relationship. Functions with array arguments. Enumerations:
declaration/definition. Enumerations and pointers. Functions with enumeration
arguments.

3

10

Unions: declaration/definition, initialization.
Non-homogeneous data types.
Structures: declaration, definition, initialization. Allowed operations on structures.
Structures and pointers. The sizeof operator applied to structures.

3

11

C language I/O.
The notions of stream and file. Files. File operations: open, close, write, read, query/set
the file position indicator. Physical deletion of files. Renaming.
Error-handling functions.

2

12

Advanced aspects of the language.
The concept of variable. Declarations/definitions (implementation details). Scope and
lifetime of variables. Variable binding. Storage classes and namespaces. R-value/L-
value. Compilation stages. Functions with a variable number of arguments. Recursive
functions (detail). Creating custom data types: library types.

2

 Total: 28
Bibliography:

1. Lect. Dr. Eng. GROSU Vlad-Alexandru, PCLP1, electronic course support (Moodle):
(https://archive.curs.upb.ro/2021/course/view.php?id=8868,
https://curs.upb.ro/2024/course/view.php?id=3871)

2. I. Rusu, Dana Gavrilescu, Vlad Al. Grosu - Programarea calculatoarelor în limbaj C, Editura
MatrixRom, Bucureşti, 2002.

3. I. Rusu, Vlad Al. Grosu – Programarea calculatoarelor în limbaj C: probleme rezolvate şi
comentate, Editura MatrixRom, Bucureşti, 2008.

4. D.I. Năstac, Programarea calculatoarelor în limbajul C – Elemente fundamentale, Editura Printech,
Bucureşti, 2006.

5. D. Burileanu, C. Dan, M. Pădure, Programare în C. Culegere de probleme, Editura Printech,
Bucureşti, 2004.

6. Brian Kernighan, Dennis Richie – The C Programming Language, Prentice Hall, New Jersey, 1978
& 1988 editions.

7. Emanuela Cerchez, Marinel Șerban – Programarea în limbajul C/C++ pentru liceu, vol. 1, Polirom,
≥ 2013.

LABORATORY
Crt.
no. Content No.

hours
1 Number bases. Conversions between common number bases. 2
2 Language alphabet. Keywords. Declaring and defining variables. 2
3 Statement block. Operators (introduction). Building expressions. Statements. 2

4
Operators (continued): assignment operator. Explicit cast. Sequencing operator. User-
defined types: typedef. The switch–case statement. Interrupts and jumps in C. The for
loop.

2

https://archive.curs.upb.ro/2021/course/view.php?id=8868
https://curs.upb.ro/2024/course/view.php?id=3871

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

5 while and do–while loops.
Arrays (introduction). 2

6 Arrays (continued): strings. Static allocation.
Pointers (I) – Introduction. 2

7 Pointers (II) – NULL pointer. Pointer arithmetic. Array–pointer relationship. 4
8 Pointers (III): pointers and dynamic allocation. 4

9 Structures. The typedef operator applied to structures. Pointers and structures: building
an abstract data type. 2

10 Enumerations.
Unions. Differences between unions and structures. 2

11 I/O operations. Library functions used for working with files. 2
12 Final laboratory verification. 2

 Total: 28
Bibliography:

1. Lect. Dr. Eng. GROSU Vlad-Alexandru, PCLP1, electronic course support (Moodle) (
https://archive.curs.upb.ro/2021/course/view.php?id=8868)

2. I. Rusu, Dana Gavrilescu, Vlad Al. Grosu - Programarea calculatoarelor în limbaj C, Editura
MatrixRom, Bucureşti, 2002.

3. I. Rusu, Dana Gavrilescu, Vlad Al. Grosu – Laboratory Guide for Computer Programming: C,
Editura MatrixRom, Bucureşti, 2004.

4. I. Rusu, Vlad Al. Grosu – Programarea calculatoarelor în limbaj C: probleme rezolvate şi
comentate, Editura MatrixRom, Bucureşti, 2008.

5. Brian Kernighan, Dennis Richie – The C Programming Language, Prentice Hall, New Jersey, 1978
& 1988 editions.

6. Herbert Schildt – C: The Complete Reference, Teora, 1999–2003.
7. Florin Munteanu, Gh. Muscă, Florin Moraru – C – Programming Techniques, Joint Printing House,

Bucharest, 1995.

11. Evaluation

Activity type 11.1 Evaluation criteria 11.2 Evaluation methods

11.3
Percentage
of final
grade

https://archive.curs.upb.ro/2021/course/view.php?id=8868

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

11.4 Course

- Correctly identifying
theoretical and practical
contexts for applying the
taught algorithms and
programming techniques.
- Defining the concepts,
principles, and methods used in
the fields of: computer
programming, high-level and
domain-specific languages,
computer system architecture,
programmable electronic
systems, graphics,
reconfigurable software
architectures.

- Sitting the individual
written examination (total:
40 points).
- Both the students’ ability to
formalize a problem and to
translate specific concepts
into a program are assessed.
- Topics cover both the
theoretical part defining
object-oriented programming
concepts and the practical
part, assessing the ability to
solve programming problems
(presented in Romanian)
using the ISO C language.

40%

11.5
Seminary/laboratory/project

- C4.5: Sitting and passing an
assessment on the architecture
and functional principles of a
working software structure.
- C6.5: Sitting an assessment
on establishing and describing
the operations necessary to
implement and test a numerical
algorithm.

Laboratory activity is
continuously verified
throughout the semester via
individual computer-based
assessments.
Students can accumulate:
• 10% from activity tests at
each lab;
• 20% from the midterm test;
• 30% from the final
colloquium—the laboratory
ends with an individual final
verification at the
workstation. This is based on
implementing an algorithm
from the semester’s material
and answering a synthetic
theoretical question.

60%

11.6 Passing conditions

Skills are checked for accumulating and then identifying practical situations specific to the presented
methods, as well as correctly applying these methods in information engineering.
Passing the subject requires accumulating (with no imposed intermediate thresholds) at least 50
points out of the total 100 points available.

12. Corroborate the content of the course with the expectations of representatives of employers and
representative professional associations in the field of the program, as well as with the current state of
knowledge in the scientific field approached and practices in higher education institutions in the
European Higher Education Area (EHEA)

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

Currently, training future engineers and researchers in numerical algorithms for solving design, testing, or
signal processing problems by various mathematical methods is essential. Training students in programming
provides the fundamental knowledge required in any later professional activity: teaching, research, and/or
design.

The activities related to Computer Programming provide the foundations of algorithmic thinking and
programming in a modern programming language, namely ANSI/ISO C according to its latest
standardization from 2011 (ISO/IEC 9899:2011).

By structuring information according to the curriculum activities, as well as through the conducted tutoring
activity, the subject provides the steps needed to assess the quality, merits, and limits of processes, programs,
projects, concepts, methods, and theories.

Appropriate use of evaluation criteria and methods, in line with European academic norms to which the
POLITEHNICA University of Bucharest adheres, allows students to self-assess continuously, based on
obtained grades and considering the observations and methodological guidance provided by the course/lab
holder.

Date Course lecturer Instructor(s) for practical activities

18.09.2025 Lect. Dr. Vlad-Alexandru
Grosu Lect. Dr. Vlad-Alexandru Grosu

 Teaching Assistant (PhD student) Grigore
Țiplea

Date of department approval Head of department

Prof. Dr. Claudius Dan

Date of approval in the Faculty
Council Dean

Prof. Eng. Dr. Radu Mihnea Udrea

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

