Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

COURSE DESCRIPTION

1. Program identification information
1.1 Higher education

National University of Science and Technology Politehnica Bucharest

institution
1.2 Faculty Electronics, Telecommunications and Information Technology
1.3 Department Electronic Devices, Circuits and Architectures
1.4 Domain of studies %&Cr(}tlt;gii); fngineering, Telecommunications and Information
1.5 Cycle of studies Bachelor’s
1.6 Programme of studies Microelectronics, Optoelectronics and Nanotechnologies

2. Date despre disciplina
2.1 Course name (ro) Programarea calculatoarelor si limbaje de programare 1
(en) Computer Programming and Programming Languages 1
2.2 Course Lecturer Lect. Dr. Vlad-Alexandru Grosu

Lect. Dr. Vlad-Alexandru Grosu / Teaching Assistant (PhD

2.3 Instructor for practical activities . .
P student) Grigore Tiplea

2.4 Year of 2.5 . .
studies 1 Semester | 2.6. Evaluation type E |2.7 Course regime Ob
2.8 Course type |F iijg(’“rse 04.F.01.0.004 2.10 Tipul de notare | Nota

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week 4 Out of which: 3.2 course |2 |3.3 seminary/laboratory |2
3.4 Total hours in the curricula 56 Out of which: 3.5 course |28 | 3.6 seminary/laboratory | 28
Distribution of time: hours

Study according to the manual, course support, bibliography and hand notes
Supplemental documentation (library, electronic access resources, in the field, etc) 38
Preparation for practical activities, homework, essays, portfolios, etc.

Tutoring 2
Examinations

Other activities (if any): 0
3.7 Total hours of individual study | 44.00

3.8 Total hours per semester 100

3.9 Number of ECTS credit points |4

4. Prerequisites (if applicable) (where applicable)

e Algebra and Mathematical Analysis

4.1 Curriculum e Mathematical Logic

4.2 Results of Applying basic knowledge, concepts, and methods from algebra and mathematical
learning analysis to computer-based modeling of the problems proposed for solution.

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

5. Necessary conditions for the optimal development of teaching activities (where applicable)

It will take place in a room equipped with a video projector and a computer, together
5.1 Course with all related accessories: power cables (data and video signal), and the projector
remote control.

e [t will take place in a room with specific equipment, which must include:

¢ General-purpose computing systems (personal computers) required to
implement specific methods and algorithms, with the necessary software
installed (operating system and required working applications—integrated
development environment, IDE)

e Whiteboard along with specific accessories: special markers, whiteboard eraser,
and cleaning solutions.

5.2 Seminary/
Laboratory/Project

6. General objective

The discipline is scheduled in year 1, semester 1 (the common core of engineering training).

It is a fundamental engineering subject that provides the study foundations especially for later
specializations based on intensive work with the personal computer, which include in the curriculum
fundamental subjects based on the use/design of algorithms, source code writing (implementation) as well as
debugging activities (identifying semantic errors).

For the lecture, the aim is to assimilate the concepts of structured programming (with a view to syntactically
grounding object-oriented programming in C++, which will follow), necessary for computer modeling of
various real-life problems, as well as those involved in designing and implementing dedicated applications
or tasks encountered in practice. Various practical situations are analyzed and algorithms are implemented in
a high-level language designed using object-oriented software design principles (ISO C). The programs
developed in the laboratory help form mental reflexes in modeling reality and assist students in their future
engineering activity. The skills and abilities provided by the course constitute fundamental knowledge
absolutely necessary for subjects specific to software-oriented specialization tracks that students may choose
in the next study cycle (starting with the 3rd year).

For the laboratory (applications), the proposal is to develop general routines of at most medium level
dedicated to solving situations encountered in real life. Thus, easy construction by hardware/software
designers of a specific library is envisaged. Programs are conceived using the ISO C/C++ languages, thereby
ensuring program portability and allowing immediate interfacing and work with most development/design
packages that are based on these related languages.

The skills acquired from writing programs in the laboratory (and using the integrated development
environment) become working tools for students, first for activities within the specialization years
(depending on their choices) and later, for year projects and the bachelor’s thesis, and ultimately in the
private sector (future software engineer).

7. Competences

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

Specific C3: Applying bgsic knowledge, concepts, and methods reggrding computer system
Competences archltectur.e, MiCrOprocessors, microcontrollers, programming languages, and
programming techniques.
e CT1: Methodical analysis of problems encountered in activity, identifying
elements for which established solutions exist, thus ensuring the fulfillment of
Transversal professional tasks;
(General) e CT3: Adapting to new technologies, professional and personal development
Competences through continuous training using printed documentation sources, specialized
software, and electronic resources in Romanian and at least one international
language.

8. Learning outcomes

Knowledge

Enumerates programming concepts in general and structured programming in particular
(per the Bohm—Jacopini theorem) that underlie the studied language.

Understands that implementation is not the only core activity in the context of computer
programming and, more broadly, software development.

Analyzes design requirements and the steps needed to actually design an application (as a
consequence of the previous statement).

Assimilates the specialized vocabulary (jargon) used in the programming field.

Is able to describe the component areas of the implemented ISO C program needed to solve

a given problem (presented in natural language).

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

¢ Identifies and describes the fundamental concepts together with their implementation
methods: data/function hiding, code reuse, function overloading and overriding.

¢ Models the proposed problems by formalizing the problem text (practices the
program/application design stage).

¢ Identifies the program components that interact in the application to be written.

¢ Identifies solutions and develops plans for solving the proposed problems (expressed in
natural language).

¢ Analyzes and compares the solution found for the assigned problem with the suggestions
offered by the lab instructor for that specific problem.

¢ Tests, debugs, and runs the written program (the implemented application) and is able to
correct possible errors after identifying them in advance, along with possible consequences.

Skills

e Demonstrates receptiveness to new learning contexts (structured programming principles
may be new from the curriculum perspective).

¢ Respects academic ethics, understanding the responsibilities assumed in individually solving
proposed problems using the methods and techniques learned.

¢ Demonstrates autonomy in organizing the learning situation/context or the situation posed
by the problem to be solved.

¢ Becomes aware of the value of their contribution in software engineering, in active life, by
identifying and proposing their own solutions to solve problems in social and economic life
(social responsibility).

Responsability
and autonomy

9. Teaching techniques

Starting from the analysis of students’ learning characteristics and their specific needs, identified by the
course holder through personal experience in the private sector, the teaching process uses both expository
methods (lecture, presentation) and conversational-interactive methods, based on action-based learning
models such as exercises or solving programming problems. Interactivity with students through the practical
component associated with the taught concepts is particularly emphasized.

Time slots are reserved for presenting and solving current problems that students encounter in year 2
electronics subjects: modeling electronic devices, analyzing passive components and circuits, and preparing
engineering skills for problem solving using computers (numerical methods).

The modeling part often reduces to solving practical problems identified in real life. The presented concepts
prepare the way for correlated subjects in years 1 and 2 (Computer Programming and Programming
Languages 2, Data Structures and Algorithms, Numerical Methods) and later, in years 3 and 4, for subjects
such as: Deep Learning and Artificial Intelligence, Robotics, or Neural Networks and Fuzzy Systems.

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

Dialogue during the lecture continues in the laboratory sessions. These are necessary for preparing students
for ongoing individual verification tests, which build skills for solving problems under time constraints. A
typical session begins with a brief review of the programming concepts specific to the lab. Afterwards,
students aim to design and write complete, functional programs—starting from a statement in natural
language (Romanian).

The language used is ISO C, standard C 1999. The open-source development environment used in the lab is
configurable accordingly and can be instructed to use the indicated ISO C standard variant via the
compilation option -std=c99. The integrated development environment and platform materials for the lab are
available to students in electronic form.

10. Contents

COURSE
Chapter Content No.
p hours
Introduction.
1 The notion of a compiler. C standards. 2
Bibliographic commentary.
Structure of C programs.
2 Syntax—semantics distinction. Components of a program. Language alphabet. 2
Keywords.
Memory: regions and address spaces.
3 Memory alignment. Number bases. Types of memory. Memory models used by the 7

compiler. Fundamental data types in C. Declaring and defining variables and constants.
Storage classes. Global variables.

Operators and expressions.

Classification of operators. Examples for the identified operator classes. Precedence
4 and associativity. Implicit and explicit conversions. Details about the comment area in 2
the general program structure. Details about header files. Details about the
preprocessor directives area. Inline functions (macros): introduction.

Statements.
5 Expression, block, decision (if), selection (switch), and looping statements. Examples. 2
Jump statements: continue, break, goto.

Function prototypes and definitions.
Inline functions (continued): differences between macro expansion and a function call.

6 The main() function: details. Modularization. Details on the user-defined type area 2
(typedef). Details on the function prototypes area.
Functions.
Declaration and definition. Local and external variables. Function calls. Formal and

7 2
actual parameters. Stack. Calling conventions. Macro functions (details). Comparing
iterative and recursive functions.
Pointers.
Declaration, initialization. Address-of and dereference operators. The special NULL

8 value. Pointer arithmetic. The void type applied to pointers. Functions with pointer 4

arguments and pointer return types. Pointers to functions. Dynamic memory allocation
techniques.

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

Arrays.

1-D and n-D arrays: declaration, definition. Initialization. Indexing. Strings. The array—
pointer relationship. Functions with array arguments. Enumerations: 3
declaration/definition. Enumerations and pointers. Functions with enumeration
arguments.

10

Unions: declaration/definition, initialization.

Non-homogeneous data types.

Structures: declaration, definition, initialization. Allowed operations on structures.
Structures and pointers. The sizeof operator applied to structures.

11

C language 1/0.

The notions of stream and file. Files. File operations: open, close, write, read, query/set
the file position indicator. Physical deletion of files. Renaming.

Error-handling functions.

12

Advanced aspects of the language.

The concept of variable. Declarations/definitions (implementation details). Scope and
lifetime of variables. Variable binding. Storage classes and namespaces. R-value/L- 2
value. Compilation stages. Functions with a variable number of arguments. Recursive
functions (detail). Creating custom data types: library types.

Total: 28

Bibliography:

1

. Lect. Dr. Eng. GROSU Vlad-Alexandru, PCLP1, electronic course support (Moodle):

(https://archive.curs.upb.ro/2021/course/view.php?id=8868,
https://curs.upb.ro/2024/course/view.php?id=3871)

. I. Rusu, Dana Gavrilescu, Vlad Al. Grosu - Programarea calculatoarelor in limbaj C, Editura

MatrixRom, Bucuresti, 2002.

. I. Rusu, Vlad Al. Grosu — Programarea calculatoarelor in limbaj C: probleme rezolvate si

comentate, Editura MatrixRom, Bucuresti, 2008.

. D.I. Nastac, Programarea calculatoarelor in limbajul C — Elemente fundamentale, Editura Printech,

Bucuresti, 2006.

. D. Burileanu, C. Dan, M. Padure, Programare in C. Culegere de probleme, Editura Printech,

Bucuresti, 2004.

. Brian Kernighan, Dennis Richie — The C Programming Language, Prentice Hall, New Jersey, 1978

& 1988 editions.

7. Emanuela Cerchez, Marinel Serban — Programarea in limbajul C/C++ pentru liceu, vol. 1, Polirom,
>2013.
LABORATORY
Crt. Content No.
no. hours
Number bases. Conversions between common number bases. 2
Language alphabet. Keywords. Declaring and defining variables. 2
Statement block. Operators (introduction). Building expressions. Statements. 2
Operators (continued): assignment operator. Explicit cast. Sequencing operator. User-
4 | defined types: typedef. The switch—case statement. Interrupts and jumps in C. The for 2
loop.

https://archive.curs.upb.ro/2021/course/view.php?id=8868
https://curs.upb.ro/2024/course/view.php?id=3871

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

5 while and do—while loops. 2
Arrays (introduction).

6 Arrays (continued): strings. Static allocation. 2
Pointers (I) — Introduction.

7 | Pointers (II) - NULL pointer. Pointer arithmetic. Array—pointer relationship. 4

8 | Pointers (III): pointers and dynamic allocation. 4

9 Structures. The typedef operator applied to structures. Pointers and structures: building ?
an abstract data type.

10 Enumerations. 2
Unions. Differences between unions and structures.

11 | I/O operations. Library functions used for working with files.

12 | Final laboratory verification. 2

Total: 28
Bibliography:
1. Lect. Dr. Eng. GROSU Vlad-Alexandru, PCLP1, electronic course support (Moodle) (

2.

~

https://archive.curs.upb.ro/2021/course/view.php?id=8868)
I. Rusu, Dana Gavrilescu, Vlad Al. Grosu - Programarea calculatoarelor in limbaj C, Editura
MatrixRom, Bucuresti, 2002.

. I. Rusu, Dana Gavrilescu, Vlad Al. Grosu — Laboratory Guide for Computer Programming: C,

Editura MatrixRom, Bucuresti, 2004.

. I. Rusu, Vlad Al. Grosu — Programarea calculatoarelor in limbaj C: probleme rezolvate si

comentate, Editura MatrixRom, Bucuresti, 2008.

. Brian Kernighan, Dennis Richie — The C Programming Language, Prentice Hall, New Jersey, 1978

& 1988 editions.

. Herbert Schildt — C: The Complete Reference, Teora, 1999—-2003.
. Florin Munteanu, Gh. Musca, Florin Moraru — C — Programming Techniques, Joint Printing House,

Bucharest, 1995.

11. Evaluation

Activity type 11.1 Evaluation criteria 11.2 Evaluation methods

11.3
Percentage
of final
grade

https://archive.curs.upb.ro/2021/course/view.php?id=8868

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

- Correctly identifying - Sitting the individual
theoretical and practical written examination (total:
contexts for applying the 40 points).
taught algorithms and - Both the students’ ability to
programming techniques. formalize a problem and to
- Defining the concepts, translate specific concepts
principles, and methods used in | into a program are assessed.
11.4 Course the fields of: computer - Topics cover both the 40%
programming, high-level and | theoretical part defining
domain-specific languages, object-oriented programming
computer system architecture, | concepts and the practical
programmable electronic part, assessing the ability to
systems, graphics, solve programming problems
reconfigurable software (presented in Romanian)
architectures. using the ISO C language.

Laboratory activity is
continuously verified
throughout the semester via
individual computer-based
assessments.

Students can accumulate:

* 10% from activity tests at
each lab;

» 20% from the midterm test;
* 30% from the final
colloquium—the laboratory
ends with an individual final
verification at the
workstation. This is based on
implementing an algorithm
from the semester’s material
and answering a synthetic
theoretical question.

- C4.5: Sitting and passing an
assessment on the architecture
and functional principles of a
working software structure.

- C6.5: Sitting an assessment
on establishing and describing
the operations necessary to
implement and test a numerical
algorithm.

11.5

(o)
Seminary/laboratory/project 60%

11.6 Passing conditions

o Skills are checked for accumulating and then identifying practical situations specific to the presented
methods, as well as correctly applying these methods in information engineering.

¢ Passing the subject requires accumulating (with no imposed intermediate thresholds) at least 50
points out of the total 100 points available.

12. Corroborate the content of the course with the expectations of representatives of employers and
representative professional associations in the field of the program, as well as with the current state of
knowledge in the scientific field approached and practices in higher education institutions in the
European Higher Education Area (EHEA)

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

Currently, training future engineers and researchers in numerical algorithms for solving design, testing, or
signal processing problems by various mathematical methods is essential. Training students in programming
provides the fundamental knowledge required in any later professional activity: teaching, research, and/or
design.

The activities related to Computer Programming provide the foundations of algorithmic thinking and
programming in a modern programming language, namely ANSI/ISO C according to its latest
standardization from 2011 (ISO/IEC 9899:2011).

By structuring information according to the curriculum activities, as well as through the conducted tutoring
activity, the subject provides the steps needed to assess the quality, merits, and limits of processes, programs,
projects, concepts, methods, and theories.

Appropriate use of evaluation criteria and methods, in line with European academic norms to which the
POLITEHNICA University of Bucharest adheres, allows students to self-assess continuously, based on
obtained grades and considering the observations and methodological guidance provided by the course/lab
holder.

Date Course lecturer Instructor(s) for practical activities

18.09.2025 Lect. Dr. Vlad-Alexandru Lect. Dr. Vlad-Alexandru Grosu

Grosu
/-h,‘»’ ~'~A/
oy oy
Teaching Assistant (PhD student) Grigore

Tiplea
Kiq

Date of department approval Head of department

Prof. Dr. Claudius Dan

Date of approval in the Faculty

Council Dean

Prof. Eng. Dr. Radu Mihnea Udrea

Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti

Facultatea de Electronica, Telecomunicatii si

Tehnologia Informatiei

