

COURSE DESCRIPTION**1. Program identification information**

1.1 Higher education institution	National University of Science and Technology Politehnica Bucharest				
1.2 Faculty	Electronics, Telecommunications and Information Technology				
1.3 Department	Physics				
1.4 Domain of studies	Electronic Engineering, Telecommunications and Information Technology				
1.5 Cycle of studies	Bachelor/Undergraduate				
1.6 Programme of studies	Technologies and Telecommunications Systems				

2. Date despre disciplină

2.1 Course name (ro) (en)	Fizică 1 Physics 1				
2.2 Course Lecturer	Conf. Dr. Gabriel Suliman				
2.3 Instructor for practical activities	Conf. Dr. Gabriel Suliman				
2.4 Year of studies	1	2.5 Semester	I	2.6. Evaluation type	E
2.8 Course type	F		2.9 Course code	04.F.01.O.003	2.10 Tipul de notare
					Nota

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week	4	Out of which: 3.2 course	3.00	3.3 seminary/laboratory	1
3.4 Total hours in the curricula	56.00	Out of which: 3.5 course	42	3.6 seminary/laboratory	14
Distribution of time:					hours
Study according to the manual, course support, bibliography and hand notes Supplemental documentation (library, electronic access resources, in the field, etc) Preparation for practical activities, homework, essays, portfolios, etc.					64
Tutoring					2
Examinations					3
Other activities (if any):					0
3.7 Total hours of individual study	69.00				
3.8 Total hours per semester	125				
3.9 Number of ECTS credit points	5				

4. Prerequisites (if applicable) (where applicable)

4.1 Curriculum	General knowledge of algebra, calculus, programming and physics from high school curricula
----------------	--

4.2 Results of learning	Not applicable
-------------------------	----------------

5. Necessary conditions for the optimal development of teaching activities (where applicable)

5.1 Course	Room equipped with a video projector
5.2 Seminary/ Laboratory/Project	Specialized introductory physics laboratory at the Physics Department. Student attendance is mandatory.

6. General objective (Referring to the teachers' intentions for students and to what the students will be thought during the course. It offers an idea on the position of course in the scientific domain, as well as the role it has for the study programme. The course topics, the justification of including the course in the curricula of the study programme, etc. will be described in a general manner)

The students make contact with the fundamental laws of nature and with their application in engineering. The students learn about how the theoretical results are confirmed by experiments. The students learn to solve problems in the field of mechanics, special theory of relativity and electromagnetism.

The students learn how to apply mathematical methods in practical situations. They start the study of modern physics and its use in electronics engineering.

The students apply mathematical and physical models to simple, fundamental cases.

The students are initiated in the methods used in scientific research.

7. Competences (Proven capacity to use knowledge, aptitudes and personal, social and/or methodological abilities in work or study situations and for personal and professional growth. They reflect the employers requirements.)

Specific Competences	Understanding the methods and results of physics and how to apply them in actual engineering activities. The ability to build and apply physical and mathematical models Developing the ability to make correct measurements and to collect and analyze experimental data, to estimate measurement uncertainties and to present the results of experiments.
Transversal (General) Competences	Developing personal learning skills, learning to combine theoretical and experimental approaches, the ability to work as part of a team. Developing the ability to debate and argue and idea in a scientific context. Honorable, ethical and responsible professional behaviour. Awareness of the need for continuous training; efficient use of resources and learning techniques for personal and professional development.

8. Learning outcomes (Synthetic descriptions for what a student will be capable of doing or showing at the completion of a course. The learning outcomes reflect the student's accomplishments and to a lesser extent the teachers' intentions. The learning outcomes inform the students of what is expected from them with respect to performance and to obtain the desired grades and ECTS points. They are defined in concise terms, using verbs similar to the examples below and indicate what will be required for evaluation. The

learning outcomes will be formulated so that the correlation with the competences defined in section 7 is highlighted.)

Knowledge	<p><i>The result of knowledge acquisition through learning. The knowledge represents the totality of facts, principles, theories and practices for a given work or study field. They can be theoretical and/or factual.</i></p> <ul style="list-style-type: none">• Defines domain-specific concepts and their units• Identifies and describes physical phenomena and the way they are mathematically described.• Formulates principles and laws, both in literal and mathematical form.• Formulates and verifies dimensionally the mathematical relations that describe physical phenomena.
Skills	<p><i>The capacity to apply the knowledge and use the know-how for completing tasks and solving problems. The skills are described as being cognitive (requiring the use of logical, intuitive and creative thinking) or practical (implying manual dexterity and the use of methods, materials, tools and instrumentation).</i></p> <ul style="list-style-type: none">• Identifies and used the applicable principles and laws for describing concrete situations.• Works productively as part of a team.• Experimentally checks theoretical models in practical applications.• Solves, analytically and numerically, problems specific to the field.• Adequately interpret causal relationships.• Formulates conclusions to the experiments carried out.• Argue the identified solutions, the ways to solve them.
Responsibility and autonomy	<p><i>The student's capacity to autonomously and responsibly apply their knowledge and skills.</i></p> <ul style="list-style-type: none">• Select appropriate bibliographic sources and analyze them.• Respect the principles of academic ethics, correctly citing the bibliographic sources used.• Demonstrates responsiveness to new learning contexts.• Demonstrates collaboration with other colleagues and teaching staff in carrying out learning activities.• Demonstrates autonomy in organizing the learning situation/context or the problem situation to be solved.• Demonstrates real-life situation management skills (organising and managing own working time, collaborative vs. conflict).

9. Teaching techniques (Student centric techniques will be considered. The means for students to participate in defining their own study path, the identification of eventual fallbacks and the remedial measures that will be adopted in those cases will be described.)

The teaching process will explore both expository (lecture, exposition) and conversational-interactive teaching methods, based on modern learning models facilitated by exploration direct and indirect of reality (experiment, demonstration, modeling), but also on action-based methods, such as exercise, practical activities and problem solving.

In the teaching activity, lectures will be used, based on Power Point presentations or different videos that will be made available to the students. Each course will start with a recap of the chapters already covered, with an emphasis on the concepts covered in the last course.

Presentations use images and diagrams so that the information presented is easy to understand and assimilate.

This discipline covers information and practical activities designed to support students in their learning efforts and the development of optimal collaborative and communicative relationships in a climate conducive to learning the fundamental concepts and notions.

It will be considered the practice of active listening and assertive communication skills, as well as feedback construction mechanisms, as ways of regulating behavior in various situations and adapting the pedagogical approach to the students' learning needs.

The teaching activity will follow the development of efficient team work in solving the different learning tasks.

10. Contents

COURSE		
Chapter	Content	No. hours
1	Physics: the science of physics and its role in modern electronics and electronics engineering. Physical units: definitions, examples, units.	2
2	Mathematical representation of the physics units and of the laws of physics: scalars, vectors, higher order tensors, the significance of the derivation and integration operations in physics.	2
3	Galileo-Newton kinematics of the point-particle in one, two- and three-dimensional space.	2
4	Newton's Laws of the classical mechanics and applications for the point-particle and for systems of multiple material points. Variation and conservation laws.	6
5	Elements of rigid body kinematics and dynamics.	2
6	Harmonic oscillations, dumped oscillations, forced and dumped oscillations. Composition of parallel and perpendicular oscillations. Systems of coupled oscillators-normal modes of oscillation.	8
7	Elastic waves: importance, equations, types of waves, main characteristics. Sound waves, basic elements of acoustics.	4
8	Special theory of relativity: principles, kinematics and dynamics, applications.	6
9	Thermodynamics and statistical mechanics; thermal and caloric coefficients; Maxwell-Boltzmann statistics; fundamental transport phenomena (conduction, diffusion, viscosity).	8
10	Basics of geometrical optics. Image formation in mirrors and lenses. Applications.	2
	Total:	42

Bibliography:

1. Written course on the Physics Department web page
2. Ch. Kittel, W. D. Knight, M. A. Ruderman, A. K. Helmholtz, B. J. Moyer, Curs de Fizică Berkeley, Mecanica, Editura Didactica si Pedagogica, 1981.
3. Ch. Kittel, W. D. Knight, M. A. Ruderman, A. K. Helmholtz, B. J. Moyer, Curs de Fizică Berkeley, Mechanics, 1973, 2nd ed.
4. Halliday & Resnick, Fundamentals of Physics, 8-th ed. Wiley India Pvt. Limited, 2008

LABORATORY		
Crt. no.	Content	No. hours
1	Introduction to statistical analysis of experimental data	2
2	Determination of the speed of light	2
3	Michelson interferometer	2
4	Dispersion of light. The spectroscope	2
5	Interference and polarization of electromagnetic waves	2
6	Study of light interference using the Young device	2
7	Study of Fresnel diffraction on circular apertures	2
8	Light wavelength measurements using the diffraction grid	2
9	Study of polarised light; the polarimeter	2
10	Study of magnetic fields generated by linear conductors. The Biot-Savart law.	2
11	Thermistor	2
12	Study of velocity distribution of electrons in metals	2
13	Study of linearly polarised light. Malus's law	2
14	Mechanical oscillations	2
	Total:	14

Bibliography:Laboratory guides on the webpage of the Physics Department (www.physics.pub.ro)**11. Evaluation**

Activity type	11.1 Evaluation criteria	11.2 Evaluation methods	11.3 Percentage of final grade
11.4 Course	- understanding the way the theory is applied to solve specific problems	-written test during the semester/homework assignments	20%
	- understanding of the fundamental theoretical notions	- final examination	50%
11.5 Seminary/laboratory/project	Laboratory: -familiarity with the basics of scientific experiments, with the measurement methods and the data analysis	-reports containing the measured values, the data analysis and the conclusions of the experiment - final laboratory exam	30%
11.6 Passing conditions			
<ul style="list-style-type: none">• Obtaining 50% of total score.• Obtaining 50% of the laboratory score. Presence is mandatory to all laboratory activities			

12. Corroborate the content of the course with the expectations of representatives of employers and representative professional associations in the field of the program, as well as with the current state of knowledge in the scientific field approached and practices in higher education institutions in the European Higher Education Area (EHEA)

The Physics 1 course is one of the fundamental disciplines in the formation of the general technical expertise of the student. The course is a stepping stone from the courses taught in high-school and those that are taught at university level.

The goal of the course is to emphasize the connection between the mathematical methods and models on one hand, and the physical models, on the other hand.

The course lays the foundation for the subsequent study of important phenomena like oscillations, waves, electromagnetism.

The students are initiated in classical theories in physics: special relativity, electromagnetic waves.

Physics 1 is the first course where the students carry out experimental work by performing real measurements, estimating uncertainties and drawing conclusions from their experiments.

Date

Course lecturer

Instructor(s) for practical activities

Conf. Dr. Gabriel Suliman Conf. Dr. Gabriel Suliman

Date of department approval

Head of department

Date of approval in the Faculty Council Dean