
Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

COURSE DESCRIPTION

1. Program identification information
1.1 Higher education
institution National University of Science and Technology Politehnica Bucharest

1.2 Faculty Electronics, Telecommunications and Information Technology
1.3 Department Electronic Devices, Circuits and Architectures

1.4 Domain of studies Electronic Engineering, Telecommunications and Information
Technology

1.5 Cycle of studies Masters
1.6 Programme of studies Advanced Computing in Embedded Systems

2. Date despre disciplină
2.1 Course name (ro)
(en)

Dezvoltare software și testare
Software Development Process and Testing

2.2 Course Lecturer Conf. Dr. Radu Hobincu
2.3 Instructor for practical activities Conf. Dr. Radu Hobincu
2.4 Year of
studies 1 2.5

Semester 2 2.6. Evaluation
type V 2.7 Course regime Ob

2.8 Course type S 2.9 Course
code 2 2.10 Tipul de

notare Nota

3. Total estimated time (hours per semester for academic activities)
3.1 Number of hours per week 4 Out of which: 3.2 course 2 3.3 seminary/laboratory 2
3.4 Total hours in the curricula 56 Out of which: 3.5 course 28 3.6 seminary/laboratory 28
Distribution of time: hours
Study according to the manual, course support, bibliography and hand notes
Supplemental documentation (library, electronic access resources, in the field, etc)
Preparation for practical activities, homework, essays, portfolios, etc.

75

Tutoring 5
Examinations 0
Other activities (if any): 14
3.7 Total hours of individual study 94.00
3.8 Total hours per semester 150
3.9 Number of ECTS credit points 6

4. Prerequisites (if applicable) (where applicable)
4.1 Curriculum Programming knowledge in C/C++ languages, Data structures and algorithms
4.2 Results of learning Computer usage abilities, technical competencies.

5. Necessary conditions for the optimal development of teaching activities (where applicable)
5.1 Course Video projector and Internet access.



Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

5.2 Seminary/
Laboratory/Project Laboratory with Internet access for students and video projector.

6. General objective (Reffering to the teachers' intentions for students and to what the students will be
thought during the course. It offers an idea on the position of course in the scientific domain, as well as the
role it has for the study programme. The course topics, the justification of including the course in the
currcula of the study programme, etc. will be described in a general manner)

The overall objective is to familiarize the student with the complete software development process, which is
not only about writing code, but also about all related processes: compilation, testing, documentation and
implementation. Thus, students will study how to effectively use version control systems, what options they
have regarding efficient build tools, how to test applications using unit tests, how to generate documentation
for an application, and how to use container systems for integration continuous, cross-compilation and
deployment.

7. Competences (Proven capacity to use knowledge, aptitudes and personal, social and/or methodological
abilities in work or study situations and for personal and proffesional growth. They refflect the empolyers
requirements.)

Specific Competences
C3. Application of basic knowledge, concepts and methods regarding the
architecture of computing systems, microprocessors, microcontrollers,
programming languages ​​and techniques (3/4)

Transversal
(General)
Competences

-

8. Learning outcomes (Synthetic descriptions for what a student will be capable of doing or showing at the
completion of a course. The learning outcomes reflect the student's acomplishments and to a lesser extent
the teachers' intentions. The learning outcomes inform the students of what is expected from them with
respect to performance and to obtain the desired grades and ECTS points. They are defined in concise
terms, using verbs similar to the examples below and indicate what will be required for evaluation. The
learning outcomes will be formulated so that the correlation with the competences defined in section 7 is
highlighted.)

The result of knowledge aquisition through learning. The knowledge represents the totality of facts,
priciples, theories and practices for a given work or study field. They can be theoretical and/or
factual.
Following this course, students will understand the entire tool chain needed to bring software from
design to implementation and will be able to discern where it is not working and needs
improvement.
The capacity to apply the knowledge and use the know-how for completing tasks and solving
problems. The skills are described as being cognitive (requiring the use of logical, intuitive and
creative thinking) or practical (implying manual dexterity and the use of methods, materials, tools
and intrumentation).
Specifically, students will know how to use the Git version control system as well as the Gitlab
platform in complex scenarios, they will be able to write their own unit tests using the Google Test
library, they will be able to create efficient complex build environments using GNU Make or
CMake, they will be able to generate documentation for code written using Doxygen and will be
able to integrate all these tools into continuous integration systems using the Docker container
system.

K
no

w
le

dg
e

Sk
ill

s



Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

The student's capacity to autonomously and responsably apply their knowledge and skills.
After this course, students will be able to develop autonomously, the entire software development
chain, starting from writing the code, up to implementation in production.

9. Teaching techniques (Student centric techniques will be considered. The means for students to
participate in defining their own study path, the identification of eventual fallbacks and the remedial
measures that will be adopted in those cases will be described.)

The teaching will be done in an interactive way, through practical examples, presented in real time, related
to complex software projects.

10. Contents
COURSE

Chapter Content No. hours
1 Version Control Systems - Git 8
2 Using the Gitlab platform 2
3 Build systems - GNU Make and CMake 4
4 Unit tests - Google Test and Google Mock 2
5 Calculation of test coverage rate - GCOVR 2
6 Generating Documentation - Doxygen 2
7 Container systems - Docker 2
8 Cross-compile using GCC/G++ 2
9 Continuous Integration (CI) in Gitlab 4

  Total: 28
Bibliography:

1. Git Reference Documentation - https://git-scm.com/docs
2. Scott Chacon and Ben Straub, Pro Git, 2nd Edition, Apress Publishing, 2024 -

https://github.com/progit/progit2/releases/download/2.1.422/progit.pdf
3. Gitlab Documentation - https://docs.gitlab.com/
4. GNU Make documentation - https://www.gnu.org/software/make/manual/make.pdf
5. CMake documentation - https://cmake.org/cmake/help/latest/
6. Google Test Documentation - https://google.github.io/googletest/
7. gcovr, user guide - https://gcovr.com/en/stable/guide.html
8. Doxygen Manual - https://www.doxygen.nl/manual/index.html
9. Docker Documentation - https://docs.docker.com/get-started/overview/

10. Ruvinda Dhambarage, A master guide to Linux cross compiling - https://ruvi-d.medium.com/a-
master-guide-to-linux-cross-compiling-b894bf909386

11. Gitlab CI Documentation - https://docs.gitlab.com/ee/ci/

LABORATORY
Crt. no. Content No. hours

R
es

po
ns

ab
ili

ty
an

d 
au

to
no

m
y

https://git-scm.com/docs
https://github.com/progit/progit2/releases/download/2.1.422/progit.pdf
https://docs.gitlab.com/
https://www.gnu.org/software/make/manual/make.pdf
https://cmake.org/cmake/help/latest/
https://google.github.io/googletest/
https://gcovr.com/en/stable/guide.html
https://www.doxygen.nl/manual/index.html
https://docs.docker.com/get-started/overview/
https://ruvi-d.medium.com/a-master-guide-to-linux-cross-compiling-b894bf909386
https://docs.gitlab.com/ee/ci/


Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

1 Implementation of the build system 1
2 Software project development 14
3 Writing unit tests 7
4 Annotation and documentation generation 2
5 Building the Docker image for compilation and cross-compilation 2
6 Setting up the continuous integration system in Gitlab 2

  Total: 28
Bibliography:

11. Evaluation

Activity type 11.1 Evaluation criteria 11.2 Evaluation methods
11.3
Percentage of
final grade

11.4 Course Assimilation of
theoretical knowledge. Quiz on the Moodle platform. 50%

11.5
Seminary/laboratory/project

The student understood
and used the techniques
in the development of the
project.

Accumulation of points
associated with tasks on Gitlab,
points awarded upon successful
completion of tasks.

50%

11.6 Passing conditions
The student will obtain:

at least one point associated with a "development" type task;
at least one point associated with a "test" type task;
at least one point associated with a "process" type task;
at least one point associated with a "documentation" type task;

The student will obtain a minimum of 50% of total points.

12. Corroborate the content of the course with the expectations of representatives of employers and
representative professional associations in the field of the program, as well as with the current state of
knowledge in the scientific field approached and practices in higher education institutions in the
European Higher Education Area (EHEA)

In the context of software engineering, companies develop increasingly complex applications, which require
an increasingly automated development environment. The lack of such an environment leads to serious
performance issues that significantly increase the time required to fully implement the solution. Thus,
discipline is critical for any engineer working in the field, equipping them with a body of knowledge that
will enable them to be effective throughout the development process.

Date Course lecturer Instructor(s) for practical activities
 
23.09.2025 Conf. Dr. Radu Hobincu Conf. Dr. Radu Hobincu



Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

 

 
Date of department approval Head of department
 
22.10.2025 Prof. Dr. Claudius Dan

 

Date of approval in the Faculty Council Dean
 

Prof. Dr. Ing. Radu-Mihnea UDREA

   


