

COURSE DESCRIPTION**1. Program identification information**

1.1 Higher education institution	National University of Science and Technology Politehnica Bucharest				
1.2 Faculty	Electronics, Telecommunications and Information Technology				
1.3 Department	Telecommunications				
1.4 Domain of studies	Electronic Engineering, Telecommunications and Information Technology				
1.5 Cycle of studies	Bachelor/Undergraduate				
1.6 Programme of studies	Networks and Telecommunications Software				

2. Date despre disciplină

2.1 Course name (ro) (en)	Instrumentație electronică de măsură Electronic Measuring Instruments				
2.2 Course Lecturer	Conf. Dr. Alexandru Vulpe				
2.3 Instructor for practical activities	Conf. Dr. Alexandru Vulpe				
2.4 Year of studies	3	2.5 Semester	I	2.6. Evaluation type	E
2.8 Course type	D		2.9 Course code	04.D.05.O.004	2.10 Tipul de notare
					Nota

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week	4.5	Out of which: 3.2 course	2.00	3.3 seminary/laboratory	2.5
3.4 Total hours in the curricula	63.00	Out of which: 3.5 course	28	3.6 seminary/laboratory	35
Distribution of time:					hours
Study according to the manual, course support, bibliography and hand notes Supplemental documentation (library, electronic access resources, in the field, etc) Preparation for practical activities, homework, essays, portfolios, etc.					58
Tutoring					0
Examinations					4
Other activities (if any):					0
3.7 Total hours of individual study	62.00				
3.8 Total hours per semester	125				
3.9 Number of ECTS credit points	5				

4. Prerequisites (if applicable) (where applicable)

	Successful completion of the following courses: <ul style="list-style-type: none">• Measurements in Electronics and Telecommunications• Electronic Devices• Signals and Systems I• Signals and Systems II• Digital Integrated Circuits
4.2 Results of learning	<ul style="list-style-type: none">• Understanding signal characterization in time and frequency domains• Analog and digital signal processing methods• Fundamental concepts and methods related to electronic devices and circuits

5. Necessary conditions for the optimal development of teaching activities (where applicable)

5.1 Course	The course will take place in a classroom equipped with a projector and computer.
5.2 Seminary/ Laboratory/Project	<ul style="list-style-type: none">• The seminar requires a classroom with a projector• The laboratory requires a specially equipped room, including:<ul style="list-style-type: none">• Signal generators, oscilloscopes, voltmeters• Passive components (resistors, inductors, capacitors)• Active components (diodes, transistors)• Students need to have:<ul style="list-style-type: none">• Passive and active components• Breadboards• Connection cables

6. General objective (Referring to the teachers' intentions for students and to what the students will be thought during the course. It offers an idea on the position of course in the scientific domain, as well as the role it has for the study programme. The course topics, the justification of including the course in the curricula of the study programme, etc. will be described in a general manner)

This course is part of the Electronic Engineering, Telecommunications, and Information Technologies domain, specializing in Telecommunication Software and Networks. It aims to familiarize students with the fundamental principles of electronic measuring and control instruments.

Students will gain knowledge of specific functional blocks, experiment evaluation capabilities, and theoretical models used for practical applications.

The course covers advanced measurement techniques for various physical quantities and corresponding equipment, preparing students for performing complex measurements in electrical and electronic circuits relevant to modern communication systems.

Additionally, the course introduces sensor-based measurement devices and current protocols used in the Internet-of-Things (IoT) for transmitting these measurements, enabling students to understand current and future trends in telecommunications systems.

7. Competences (*Proven capacity to use knowledge, aptitudes and personal, social and/or methodological abilities in work or study situations and for personal and professional growth. They reflect the employers requirements.*)

Specific Competences	<ul style="list-style-type: none">• Demonstrates advanced knowledge of measurement instruments in electronics.• Applies standardized methods and digital measurement tools for evaluation and diagnosis.• Analyzes and justifies measurement techniques using key concepts and methodologies.• Communicates effectively using scientific vocabulary in Romanian, both in writing and orally.
Transversal (General) Competences	<ul style="list-style-type: none">• Works effectively in teams, coordinating efforts to solve medium-complexity problems.• Demonstrates autonomy and critical thinking by independently searching and analyzing data.• Synthesizes and presents knowledge systematically.• Adheres to academic ethical principles, correctly citing bibliographic sources.• Applies emotional intelligence in social and professional contexts, making objective decisions under stress.

8. Learning outcomes (*Synthetic descriptions for what a student will be capable of doing or showing at the completion of a course. The learning outcomes reflect the student's accomplishments and to a lesser extent the teachers' intentions. The learning outcomes inform the students of what is expected from them with respect to performance and to obtain the desired grades and ECTS points. They are defined in concise terms, using verbs similar to the examples below and indicate what will be required for evaluation. The learning outcomes will be formulated so that the correlation with the competences defined in section 7 is highlighted.*)

Knowledge	<p><i>The result of knowledge acquisition through learning. The knowledge represents the totality of facts, principles, theories and practices for a given work or study field. They can be theoretical and/or factual.</i></p> <ul style="list-style-type: none">• Identifies the basic principles of electronic measuring instruments.• Defines measurement-related concepts and equipment.• Describes functional blocks of measurement devices.• Understands measurement consequences and relationships.
------------------	--

Skills	<p><i>The capacity to apply the knowledge and use the know-how for completing tasks and solving problems. The skills are described as being cognitive (requiring the use of logical, intuitive and creative thinking) or practical (implying manual dexterity and the use of methods, materials, tools and instrumentation).</i></p> <ul style="list-style-type: none">• Selects and organizes relevant information.• Uses measurement principles to solve problems.• Works effectively in teams.• Conducts practical applications and experiments.• Interprets experimental results accurately.• Analyzes and compares measurement configurations and estimates errors.• Formulates and argues solutions to measurement-related problems.
Responsability and autonomy	<p><i>The student's capacity to autonomously and responsably apply their knowledge and skills.</i></p> <ul style="list-style-type: none">• Adapts to new learning contexts.• Collaborates with peers and instructors.• Demonstrates autonomy in organizing learning tasks.• Engages in student social life and academic community events.• Proposes innovative solutions to improve social and economic conditions.• Applies ethical principles when assessing technological impact.

9. Teaching techniques (Student centric techniques will be considered. The means for students to participate in defining their own study path, the identification of eventual fallbacks and the remedial measures that will be adopted in those cases will be described.)

The teaching process will explore both expository methods (lectures, presentations) and interactive methods based on discovery learning models, facilitated by direct and indirect exploration of reality (experiments, demonstrations, modeling), as well as action-based methods, such as exercises, practical activities, and problem-solving.

Lecture presentation will combine video projection for theoretical foundations, demonstrations, and schematics, as well as whiteboard usage for examples and justifications, with active student participation.

10. Contents

COURSE		
Chapter	Content	No. hours
1	General Measurement Techniques	2
2	Measurement Accuracy	2
3	Data Converters	8
4	Digital Oscilloscope	4
5	Digital Impedance Measurement	2
6	Digital Voltmeters	2
7	Frequency and Time Interval Measurements	2
8	Signal Shape Measurements	2
9	Sensors and Protocols	4

		Total:	28
--	--	---------------	----

Bibliography:**LABORATORY**

Crt. no.	Content	No. hours
1	Measurements in Steady-State Sinusoidal Regime	3
2	Distortion Measurement	3
3	A/D and D/A Converters	3
4	Digital Oscilloscope	3
5	Impedance Measurement	3
6	Digital Voltage Measurement	3
7	Final Practical Test	3
		Total: 21

SEMINARY

Crt. no.	Content	No. hours
1	Measurement Techniques and Accuracy	2
2	Digital-to-Analog Converters	2
3	Analog-to-Digital Converters	2
4	Oscilloscope	2
5	Voltage, Current, and Impedance Measurement	2
6	Time Interval Measurement	2
7	Seminar Test	2
		Total: 14

Bibliography:**11. Evaluation**

Activity type	11.1 Evaluation criteria	11.2 Evaluation methods	11.3 Percentage of final grade
11.4 Course	- Mastery of fundamental theoretical concepts and understanding their application in specific cases. - Ability to find optimal and efficient solutions in practical applications.	Final Exam	40%
	- Ability to find optimal and efficient solutions in practical applications.	Midterm Test	15%

11.5 Seminary/laboratory/project	- Quality and accuracy of responses in test questions related to the prepared work. - Implementation of measurement circuits, definition of experiments, and evaluation of results.	- Tests with questions from prepared work and evaluation of laboratory reports. - Final practical laboratory test.	30%
	- Ability to find optimal and efficient solutions in practical applications.	Seminar Test	15%
11.6 Passing conditions			
Minimum 50% of the total score			
Minimum 50% of the semester activity score			
Minimum 50% of the laboratory score			

12. Corroborate the content of the course with the expectations of representatives of employers and representative professional associations in the field of the program, as well as with the current state of knowledge in the scientific field approached and practices in higher education institutions in the European Higher Education Area (EHEA)

Through the activities carried out, students develop skills for determining, in numerical form, the values of physical quantities necessary for the quantitative characterization of various objects and phenomena, for providing solutions to problems, and for proposing ideas to improve the existing situation in the field of electronic measurements.

In developing the course content, aspects described in specialized literature, as well as notes from manufacturers of measuring equipment, have been taken into account.

The course content is similar to that of courses conducted at universities such as **MIT, TU Delft, or the University of Zagreb**.

Through laboratory activities, teamwork in groups of two, as well as the final laboratory test, the course aims to develop graduates' abilities to manage practical situations they may encounter in real life, thereby increasing their contribution to improving the socio-economic environment.

Date

Course lecturer

Instructor(s) for practical activities

Conf. Dr. Alexandru Vulpe Conf. Dr. Alexandru Vulpe

Date of department approval

Head of department

Conf. dr. ing. Șerban-Georgică Obreja

Universitatea Națională de Știință și Tehnologie Politehnica București
Facultatea de Electronică, Telecomunicații și
Tehnologia Informației

Date of approval in the Faculty Council Dean

Prof. dr. ing. Mihnea Udrea